Фазы доставки дейтаграмм

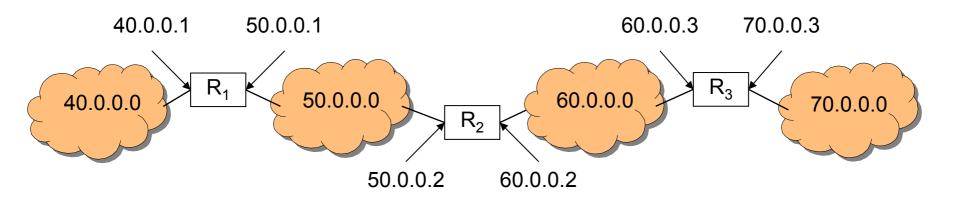
Прямая (direct delivery) и косвенная (indirect delivery) доставка.

Для всех компьютеров, подключенных к одной физической сети, сетевые префиксы IP-адресов, идентифицирующие сеть, должны совпадать. Поскольку для извлечения сетевого префикса из IP-адреса необходимо лишь несколько машинных команд, то процесс выяснения возможности доставки дейтаграммы напрямую получателю является эффективным.

Передача IP-дейтаграмм между двумя компьютерами подключенными к одной физической сети осуществляется напрямую, без участия каких-либо маршрутизаторов. Отправитель помещает IP-дейтаграмму в физический кадр сети, преобразует IP-адрес получателя в физический адрес и посылает по нему физический кадр, используя сетевое оборудование.

В объединенной сети на основе протокола ТСР/IP, маршрутизаторы представляют взаимосвязанную структуру, где соседние маршрутизаторы непосредственно взаимодействуют между собой. Дейтаграмма передается от маршрутизатора к следующему маршрутизатору до тех пора, пока не достигнет того маршрутизатора, который непосредственно подключен к физической сети компьютера получателя. На заключительном этапе маршрутизатор находящийся в одной физической сети с получателем посылает ему дейтаграмму на прямую.

ІР-маршрутизация на основе таблиц


Система ІР-адресации создавалась специально с учетом требований эффективной маршрутизации:

- принцип намеренного скрытия информации о конкретных компьютерах в локальной сети;
- принцип выбора маршрута следования на основании минимально необходимых данных (подробная информация о конкретных узлах должна быть сосредоточена в месте их подключения);
- принцип маршрутизации удаленным компьютером пакетов не вдаваясь в излишни подробности.

Использование номера сети в адресе назначения вместо полного адреса компьютера делает маршрутизацию эффективной, а таблицы маршрутизации маленькими в размерах.

Обычно в таблице маршрутизации содержатся пары (N, R), где N - это IP-адрес *сети* получателя, а R является IP-адресом следующего по порядку маршрутизатора на пути следования к сети N. Маршрутизатор R называется *ближайшей точкой перехода (пехt hop)*, а сама идея хранения в таблицах маршрутизации IP-адреса ближайшей точки перехода для каждого получателя называется *маршрутизацией* на шаг вперед (next-hop routing).

ІР-маршрутизация на основе таблиц

Пример объединенной сети из четырех физических сетей объединенных тремя маршрутизаторами

Для достижения сети:	Направлять дейтаграммы:
50.0.0.0	Непосредственно получателю
60.0.0.0	Непосредственно получателю
40.0.0.0	50.0.0.1
70.0.0.0	60.0.0.3

Таблица маршрутизации устройства R2

ІР-маршрутизация на основе таблиц

Программное обеспечение протокола IP сохраняет в таблицах маршрутизации информацию только о номерах сетей, а не о конкретных номерах узлов этих сетей, в которых могут находиться потенциальные получатели дейтаграмм. Это позволяет уменьшить размер таблиц и повысить эффективность процесса маршрутизации.

Выбор маршрута следования на основе номера сети получателя имеет несколько следствий:

- в большинстве реализаций сетевого программного обеспечения все дейтаграммы будут доставляться по одно и тому же маршруту;
- если к сети получателя имеется несколько маршрутов следования, то они не смогут использоваться одновременно, независимо от запрошенного в заголовках дейтаграмм типа обслуживания;
- удаленный отправитель не в состоянии определить подключен ли к физической сети узел получателя и нормально ли он функционирует;
- следование дейтаграмм от одного маршрутизатора к другому и обратно может проходить по разным маршрутам.

Маршрут следования дейтаграмм по умолчанию

Если таблица маршрутизации не содержит адрес сети получателя, то дейтаграмма должны посылаться стандартному *маршрутизатору по умолчанию (default router)*.

Пример таблицы маршрутизации

Список интерфейсов

0x1 MS TCP Loopback interface

0x2 ...00 1d 92 23 0a 89 Realtek RTL8168/8111 PCI-E Gigabit Ethernet NIC

Активные маршруты:

Сетевой адрес	Маска сети	Адрес шлюза	Интерфейс	Метрика
0.0.0.0	0.0.0.0	82.179.184.161	82.179.184.175	1
82.179.184.160	255.255.255.224	82.179.184.175	82.179.184.175	10
82.179.184.175	255.255.255.255	127.0.0.1	127.0.0.1	10
82.255.255.255	255.255.255.255	82.179.184.175	82.179.184.175	10
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
224.0.0.0	240.0.0.0	82.179.184.175	82.179.184.175	10
255.255.255	255.255.255.255	82.179.184.175	82.179.184.175	1

Основной шлюз: 82.179.184.161

Постоянные маршруты:

Отсутствует

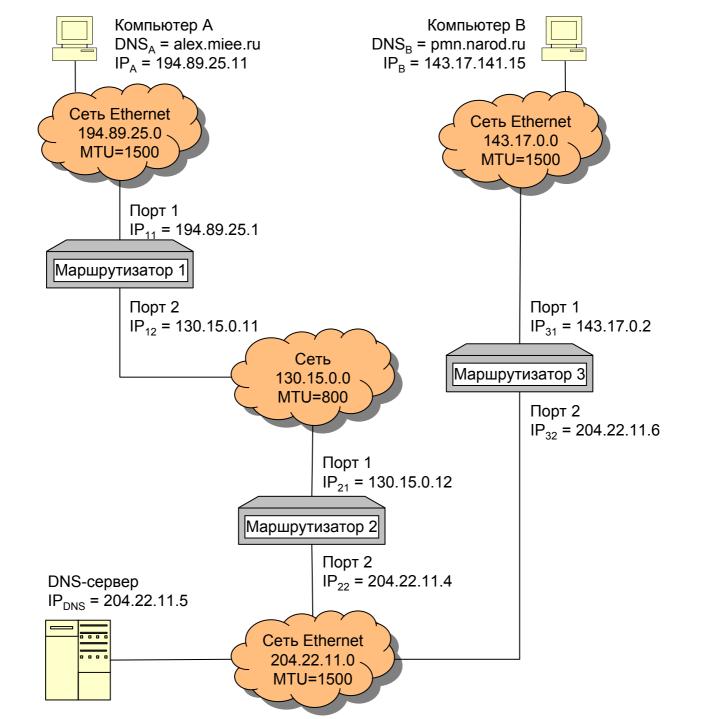
Алгоритм IP-маршрутизации

1	Извлечь из дейтаграммы IP-адрес конечного получателя и выделить сетевой префикс netid
2	Если netid совпадает с сетевым префиксом одной из сетей, к которой непосредственно подключен маршрутизатор, выполнить прямую доставку дейтаграммы конечному получателю по соответствующей сети (которая включает определение физического адреса конечного получателя, вложение дейтаграммы в физический кадр и его отправка получателю)
3	Иначе, если в таблице маршрутизации указан маршрут конкретно для компьютера получателя, переслать дейтаграмму в ближайшую точку перехода, адрес которой указан в таблице
4	Иначе, если в таблице маршрутизации указан маршрут для сети с префиксом netid, переслать дейтаграмму в ближайшую точку перехода, адрес которой указан в таблице
5	Иначе, если в таблице маршрутизации указан маршрут по умолчанию, отправить дейтаграмму стандартному маршрутизатору, адрес которого указан в таблице
6	Иначе, сгенерировать ошибку маршрутизации

Маршрутизация с использованием ІР-адресов

Может показаться странным, что раз каждый раз необходимо преобразование IPадресов ближайших точек перехода в соответствующие физические адреса, почему нельзя в таблице маршрутизации указать сразу эти физические адреса.

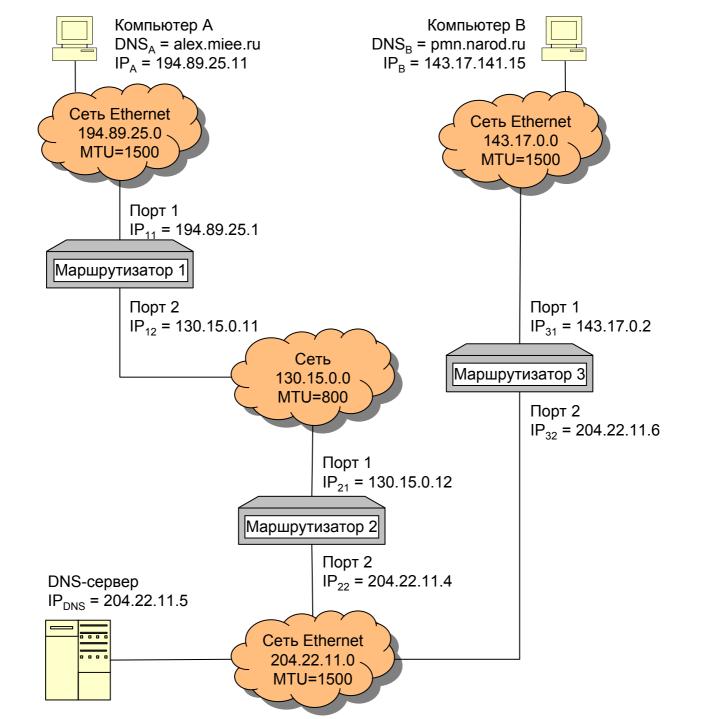
На это есть две причины:

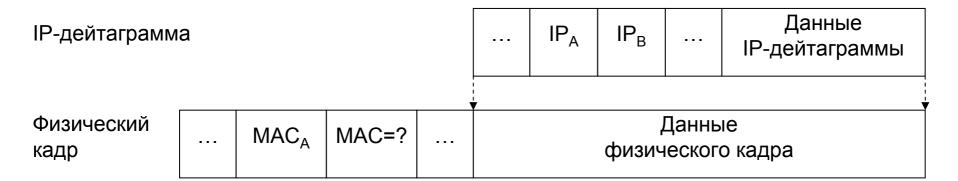

- Использование именно IP-адресов в таблицах маршрутизации упрощает задачу сетевым администраторам в плане настройки и контроля правильности обновления таблиц маршрутизации соответствующими программами.
- Основная цель разработки протокола IP, это скрытие деталей используемых низкоуровневых сетевых технологий.

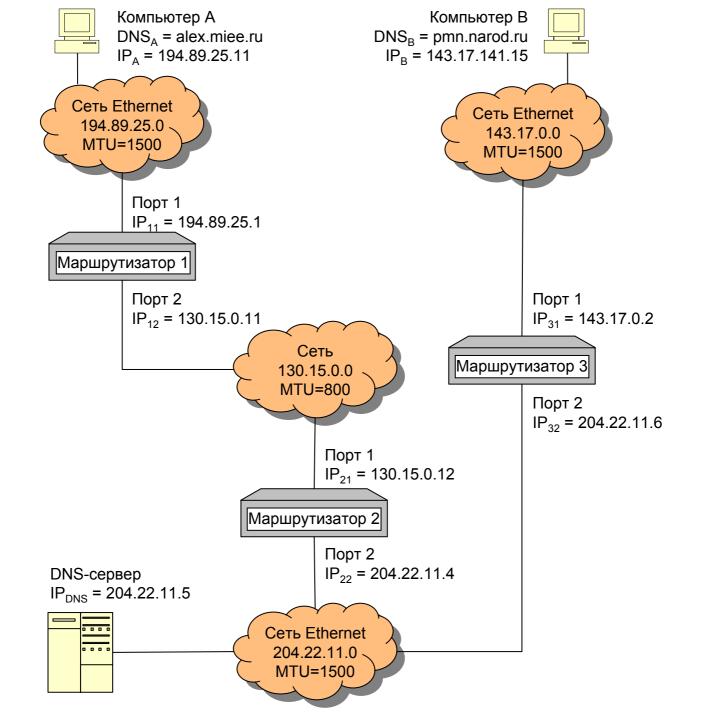
Обработка входящих дейтаграмм

Узлы сети, которые не являются маршрутизаторами, не должны выполнять пересылку случайно попавших к ним дейтаграмм. Такие дейтаграммы должны удаляться.

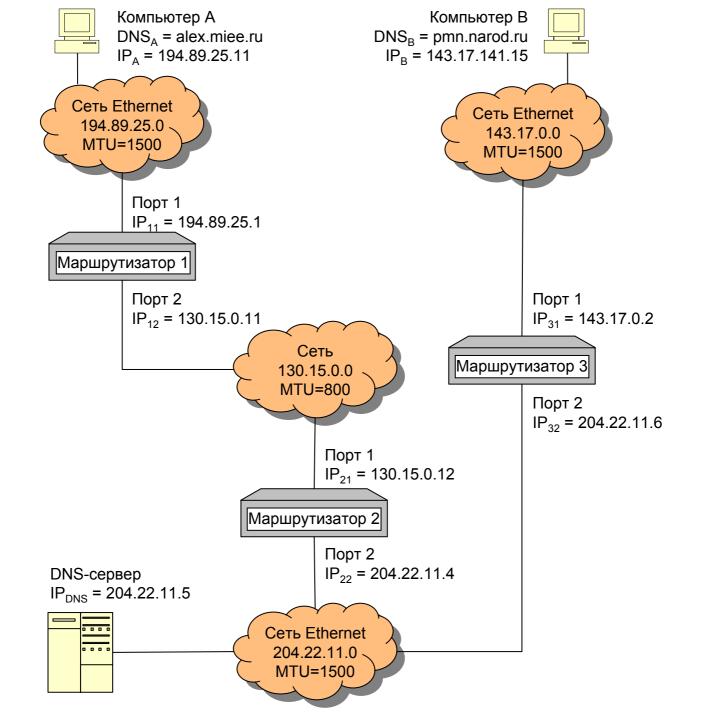
Существует четыре причины, по которым компьютеры, не предназначенные для функционирования в качестве маршрутизатора, должны воздерживаться от выполнения любых функций маршрутизатора:


- Получение компьютером дейтаграмм предназначенных для других узлов сети, свидетельствует о возникновении проблем в системе маршрутизации и доставки. Если бы компьютер обрабатывал дейтаграммы, не предназначенные для него, или пытался бы исправить маршрут следования, то о возникших проблемах в сети никто бы не узнал
- Процесс маршрутизации связан с большими потоками информации и их обработкой центральным процессором. Поэтому это может сказаться на работоспособности и скорости работы прикладных программ, запущенных на компьютере.
- Возникновение простых ошибочных ситуаций может привести к хаосу в сети.
- На маршрутизаторы возлагается ряд полезных функций, а не только перенаправление потоков данных в сети. Таким образом, каждый компьютер сети будет выполнять маршрутизацию дейтаграмм, не поддерживая при этом всех функций маршрутизатора, то результат будет непредсказуемым.

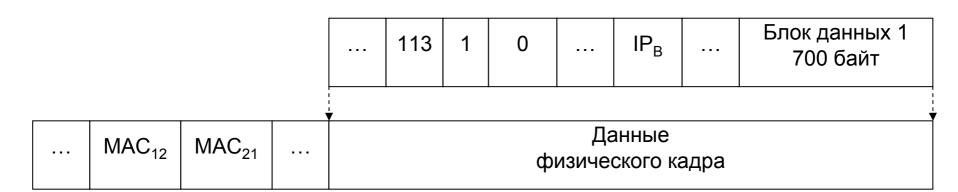

Этап 1.

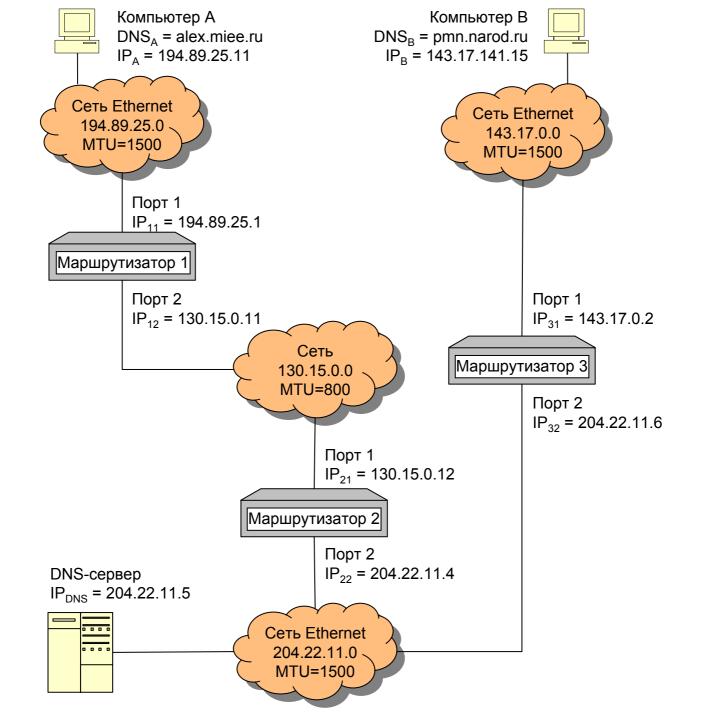


HTTP-запрос сформированный на прикладном уровне, передается вниз по уровням модели OSI, и помещается в поле данных IP-дейтаграммы


Этап 3.

Этап 5.

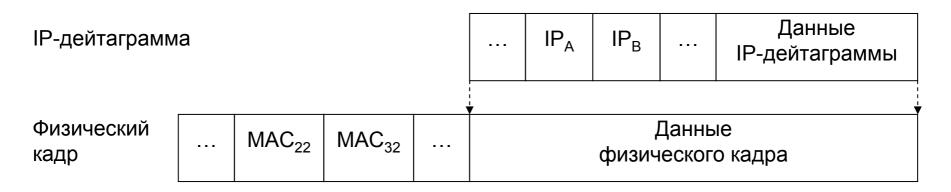

Сетевой адрес:	Адрес следующего маршрутизатора:
130.15.0.0	130.15.0.12
204.22.11.0	130.15.0.12
143.17.0.0	130.15.0.12
По умолчанию	130.15.0.12

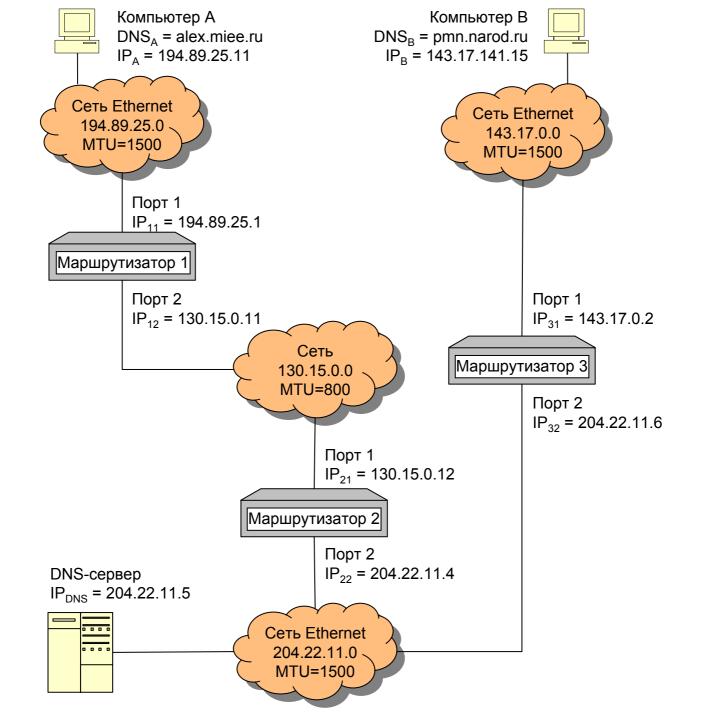


Этап 6.

Заголовок исходной ІР-дейтаграммы					аммы	Данные исходной IP-дейтаграммы	
	113	0	0		IP _B		Данные 1400 байт
	113	1	0		IP _B		Блок данных 1 700 байт
	113	0	700		IP _B		Блок данных 2 700 байт

Этап 7.

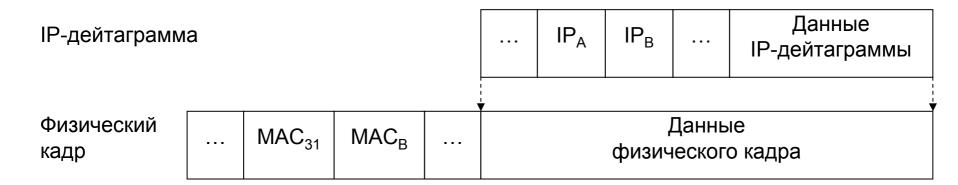


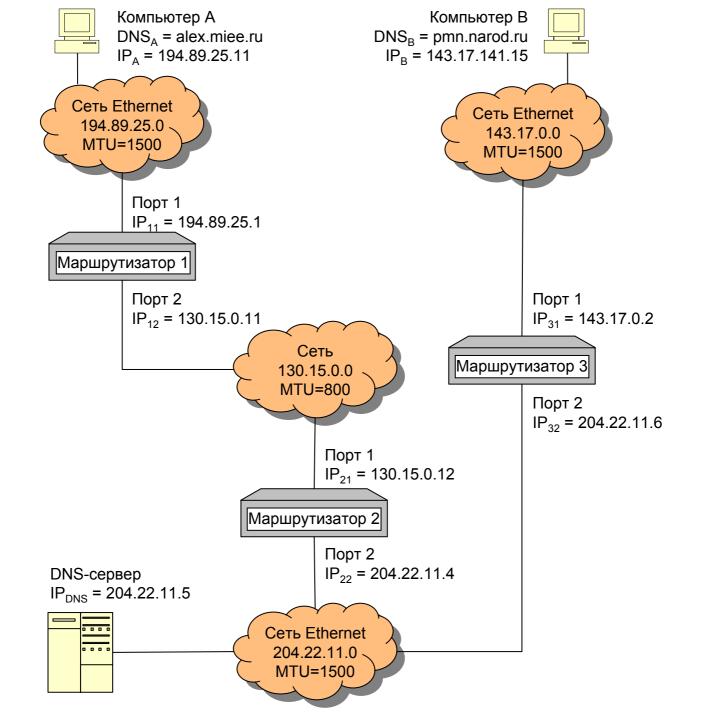


Этап 8.

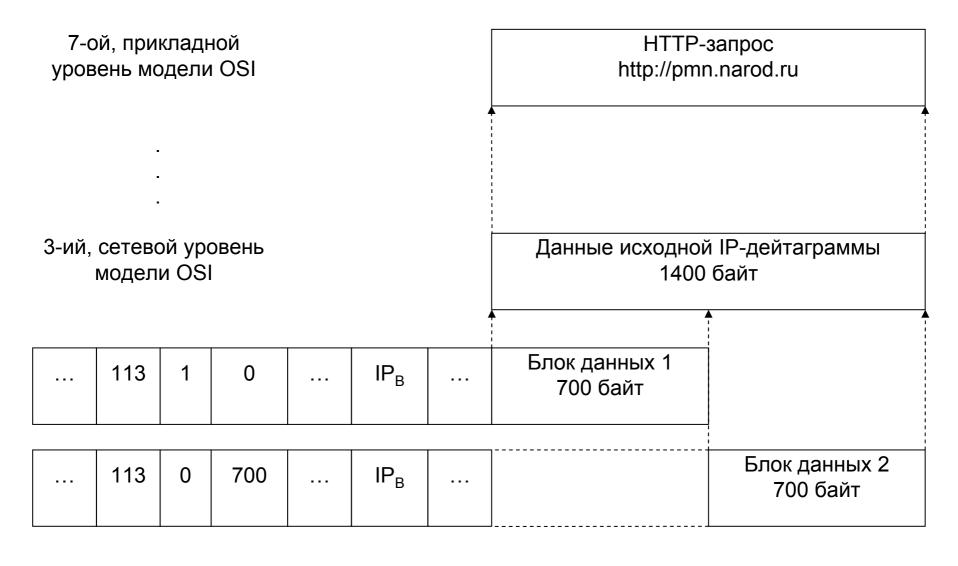
Сетевой адрес:	Адрес следующего маршрутизатора:
По умолчанию	204.22.11.6

Этап 9.





Этап 10.


Сетевой адрес:	Адрес следующего маршрутизатора:
143.17.0.0	Прямая доставка
204.22.11.0	Прямая доставка
По умолчанию	204.22.11.6

Этап 11.

Этап 12.

